Embeddings
Contents
Embeddings#
unit#
- tensorkrowch.embeddings.unit(data, dim=2, axis=- 1)[source]#
Embedds the data tensor using the local feature map defined in the original paper by E. Miles Stoudenmire and David J. Schwab.
Given a vector \(x\) with \(N\) components, the embedding will be
\[\Phi^{s_1...s_N}(x) = \phi^{s_1}(x_1)\otimes\cdots\otimes\phi^{s_N}(x_N)\]where each \(\phi^{s_j}(x_j)\) is
\[\phi^{s_j}(x_j) = \sqrt{\binom{d-1}{s_j-1}} (\cos{\frac{\pi}{2}x_j})^{d-s_j}(\sin{\frac{\pi}{2}x_j})^{s_j-1}\]being \(d\) the desired output dimension (
dim
).- Parameters:
data (torch.Tensor) –
Data tensor with shape
\[(batch_0 \times \cdots \times batch_n \times) n_{features}\]That is,
data
is a (batch) vector with \(n_{features}\) components. The \(batch\) sizes are optional.dim (int) – New feature dimension.
axis (int) –
Axis where the
data
tensor is ‘expanded’. Should be between 0 and the rank ofdata
. By default, it is -1, which returns a tensor with shape\[(batch_0 \times \cdots \times batch_n \times) n_{features} \times dim\]
- Return type:
torch.Tensor
Examples
>>> a = torch.ones(5) >>> a tensor([1., 1., 1., 1., 1.])
>>> emb_a = tk.embeddings.unit(a) >>> emb_a tensor([[-4.3711e-08, 1.0000e+00], [-4.3711e-08, 1.0000e+00], [-4.3711e-08, 1.0000e+00], [-4.3711e-08, 1.0000e+00], [-4.3711e-08, 1.0000e+00]])
>>> b = torch.randn(100, 5) >>> emb_b = tk.embeddings.unit(b, dim=6) >>> emb_b.shape torch.Size([100, 5, 6])
add_ones#
- tensorkrowch.embeddings.add_ones(data, axis=- 1)[source]#
Embedds the data tensor adding 1’s as the first component of each vector. That is, given a vector
\[\begin{split}x = \begin{bmatrix} x_1\\ \vdots\\ x_N \end{bmatrix}\end{split}\]returns a matrix
\[\begin{split}\hat{x} = \begin{bmatrix} 1 & x_1\\ \vdots & \vdots\\ 1 & x_N \end{bmatrix}\end{split}\]- Parameters:
data (torch.Tensor) –
Data tensor with shape
\[(batch_0 \times \cdots \times batch_n \times) n_{features}\]That is,
data
is a (batch) vector with \(n_{features}\) components. The \(batch\) sizes are optional.axis (int) –
Axis where the
data
tensor is ‘expanded’. Should be between 0 and the rank ofdata
. By default, it is -1, which returns a tensor with shape\[(batch_0 \times \cdots \times batch_n \times) n_{features} \times 2\]
- Return type:
torch.Tensor
Examples
>>> a = 2 * torch.ones(5) >>> a tensor([2., 2., 2., 2., 2.])
>>> emb_a = tk.embeddings.add_ones(a) >>> emb_a tensor([[1., 2.], [1., 2.], [1., 2.], [1., 2.], [1., 2.]])
>>> b = torch.randn(100, 5) >>> emb_b = tk.embeddings.add_ones(b) >>> emb_b.shape torch.Size([100, 5, 2])
poly#
- tensorkrowch.embeddings.poly(data, degree=2, axis=- 1)[source]#
Embedds the data tensor stacking powers of it. That is, given the vector
\[\begin{split}x = \begin{bmatrix} x_1\\ \vdots\\ x_N \end{bmatrix}\end{split}\]returns a matrix
\[\begin{split}\hat{x} = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^n\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & x_N & x_N^2 & \cdots & x_N^n \end{bmatrix}\end{split}\]being \(n\) the
degree
of the monomials.If
degree = 1
, it is equivalent toadd_ones()
.- Parameters:
data (torch.Tensor) –
Data tensor with shape
\[(batch_0 \times \cdots \times batch_n \times) n_{features}\]That is,
data
is a (batch) vector with \(n_{features}\) components. The \(batch\) sizes are optional.degree (int) – Maximum degree of the monomials. The feature dimension will be
degree + 1
.axis (int) –
Axis where the
data
tensor is ‘expanded’. Should be between 0 and the rank ofdata
. By default, it is -1, which returns a tensor with shape\[(batch_0 \times \cdots \times batch_n \times) n_{features} \times (degree + 1)\]
- Return type:
torch.Tensor
Examples
>>> a = 2 * torch.ones(5) >>> a tensor([2., 2., 2., 2., 2.])
>>> emb_a = tk.embeddings.poly(a) >>> emb_a tensor([[1., 2., 4.], [1., 2., 4.], [1., 2., 4.], [1., 2., 4.], [1., 2., 4.]])
>>> b = torch.randn(100, 5) >>> emb_b = tk.embeddings.poly(b, degree=3) >>> emb_b.shape torch.Size([100, 5, 4])
discretize#
- tensorkrowch.embeddings.discretize(data, level, base=2, axis=- 1)[source]#
Embedds the data tensor discretizing each variable in a certain
basis
and with a certainlevel
of precision, assuming the values to discretize are all between 0 and 1. That is, given a vector\[\begin{split}x = \begin{bmatrix} x_1\\ \vdots\\ x_N \end{bmatrix}\end{split}\]returns a matrix
\[\begin{split}\hat{x} = \begin{bmatrix} \lfloor x_1 b^1 \rfloor \mod b & \cdots & \lfloor x_1 b^{l} \rfloor \mod b\\ \vdots & \ddots & \vdots\\ \lfloor x_N b^1 \rfloor \mod b & \cdots & \lfloor x_N b^{l} \rfloor \mod b \end{bmatrix}\end{split}\]where \(b\) stands for
base
, and \(l\) forlevel
.- Parameters:
data (torch.Tensor) –
Data tensor with shape
\[(batch_0 \times \cdots \times batch_n \times) n_{features}\]That is,
data
is a (batch) vector with \(n_{features}\) components. The \(batch\) sizes are optional. Thedata
tensor is assumed to have elements between 0 and 1.level (int) – Level of precision of the discretization. This will be the new feature dimension.
base (int) – The base of the discretization.
axis (int) –
Axis where the
data
tensor is ‘expanded’. Should be between 0 and the rank ofdata
. By default, it is -1, which returns a tensor with shape\[(batch_0 \times \cdots \times batch_n \times) n_{features} \times level\]
- Return type:
torch.Tensor
Examples
>>> a = torch.tensor([0, 0.5, 0.75, 1]) >>> a tensor([0.0000, 0.5000, 0.7500, 1.0000])
>>> emb_a = tk.embeddings.discretize(a, level=3) >>> emb_a tensor([[0., 0., 0.], [1., 0., 0.], [1., 1., 0.], [1., 1., 1.]])
>>> b = torch.rand(100, 5) >>> emb_b = tk.embeddings.discretize(b, level=3) >>> emb_b.shape torch.Size([100, 5, 3])
To embed a data tensor with elements between 0 and 1 as basis vectors, one can concatenate
discretize()
withbasis()
.>>> a = torch.rand(100, 10) >>> emb_a = tk.embeddings.discretize(a, level=1, base=5) >>> emb_a.shape torch.Size([100, 10, 1])
>>> emb_a = tk.embeddings.basis(emb_a.squeeze(2).int(), dim=5) >>> emb_a.shape torch.Size([100, 10, 5])
basis#
- tensorkrowch.embeddings.basis(data, dim=2, axis=- 1)[source]#
Embedds the data tensor transforming each value, assumed to be an integer between 0 and
dim - 1
, into the corresponding vector of the computational basis. That is, given a vector\[\begin{split}x = \begin{bmatrix} x_1\\ \vdots\\ x_N \end{bmatrix}\end{split}\]returns a matrix
\[\begin{split}\hat{x} = \begin{bmatrix} \lvert x_1 \rangle\\ \vdots\\ \lvert x_N \rangle \end{bmatrix}\end{split}\]- Parameters:
data (torch.Tensor) –
Data tensor with shape
\[(batch_0 \times \cdots \times batch_n \times) n_{features}\]That is,
data
is a (batch) vector with \(n_{features}\) components. The \(batch\) sizes are optional. Thedata
tensor is assumed to have integer elements between 0 anddim - 1
.dim (int) – The dimension of the computational basis. This will be the new feature dimension.
axis (int) –
Axis where the
data
tensor is ‘expanded’. Should be between 0 and the rank ofdata
. By default, it is -1, which returns a tensor with shape\[(batch_0 \times \cdots \times batch_n \times) n_{features} \times dim\]
- Return type:
torch.Tensor
Examples
>>> a = torch.arange(5) >>> a tensor([0, 1, 2, 3, 4])
>>> emb_a = tk.embeddings.basis(a, dim=5) >>> emb_a tensor([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]])
>>> b = torch.randint(low=0, high=10, size=(100, 5)) >>> emb_b = tk.embeddings.basis(b, dim=10) >>> emb_b.shape torch.Size([100, 5, 10])
To embed a data tensor with elements between 0 and 1 as basis vectors, one can concatenate
discretize()
withbasis()
.>>> a = torch.rand(100, 10) >>> emb_a = tk.embeddings.discretize(a, level=1, base=5) >>> emb_a.shape torch.Size([100, 10, 1])
>>> emb_a = tk.embeddings.basis(emb_a.squeeze(2).int(), dim=5) >>> emb_a.shape torch.Size([100, 10, 5])
fourier#
- tensorkrowch.embeddings.fourier(data, dim=2, axis=- 1)[source]#
Embedds the data tensor using the Fourier basis functions of \(L^2[0,1]\). That is, given the vector
\[\begin{split}x = \begin{bmatrix} x_1\\ \vdots\\ x_N \end{bmatrix}\end{split}\]returns a matrix
\[\begin{split}\hat{x} = \begin{bmatrix} 1 & \sqrt{2}\cos(2\pi x_1) & \sqrt{2}\sin(2\pi x_1) & \sqrt{2}\cos(4\pi x_1) & \sqrt{2}\sin(4\pi x_1) & \cdots\\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\\ 1 & \sqrt{2}\cos(2\pi x_N) & \sqrt{2}\sin(2\pi x_N) & \sqrt{2}\cos(4\pi x_N) & \sqrt{2}\sin(4\pi x_N) & \cdots \end{bmatrix}\end{split}\]where the number of columns is specified by
dim
.- Parameters:
data (torch.Tensor) –
Data tensor with shape
\[(batch_0 \times \cdots \times batch_n \times) n_{features}\]That is,
data
is a (batch) vector with \(n_{features}\) components. The \(batch\) sizes are optional.dim (int) – New feature dimension.
axis (int) –
Axis where the
data
tensor is ‘expanded’. Should be between 0 and the rank ofdata
. By default, it is -1, which returns a tensor with shape\[(batch_0 \times \cdots \times batch_n \times) n_{features} \times dim\]
- Return type:
torch.Tensor
Examples
>>> a = torch.ones(5) >>> a tensor([0.1916, 0.9719, 0.7613, 0.6427, 0.6945])
>>> emb_a = tk.embeddings.fourier(a, dim=6) >>> emb_a tensor([[ 1.0000, 0.5074, 1.3200, -1.0501, 0.9473, -1.2610], [ 1.0000, 1.3922, -0.2486, 1.3268, -0.4895, 1.2201], [ 1.0000, 0.1000, -1.4107, -1.4001, -0.1994, -0.2979], [ 1.0000, -0.8827, -1.1049, -0.3123, 1.3793, 1.2726], [ 1.0000, -0.4829, -1.3292, -1.0845, 0.9077, 1.2234]])
>>> b = torch.randn(100, 5) >>> emb_b = tk.embeddings.fourier(b, dim=6) >>> emb_b.shape torch.Size([100, 5, 6])